[Grant-in-Aid for Scientific Research (S)]

Broad Section E

Title of Project : Nanoscale Element Replacement Science: Structural Transformation of Nanocrystalline Phases and Development of Novel Functions

TERANISHI Toshiharu

(Kyoto University, Institute for Chemical Research, Professor)

Research Project Number :	19H05634	Researcher Number : 50262598
---------------------------	----------	------------------------------

Keyword : Nanoparticle-related Chemistry, Colloid, Material Conversion and Catalyst, Energy Conversion Materials

Reyword : Manoparticle related chemistry, conord, Materia	
[Purpose and Background of the Research]	Then, novel physical and chemical properties of these NPs
Noble metal nanoparticles (NPs) are excellent functional	based on the ground-state electronic structure modulation
materials based on the band structures that the d band	are developed.
centers are a few eV lower than the Fermi levels. Therefore,	• Synthesis of ionic crystalline heterostructured NPs for
it seems difficult to replace the noble metal NPs with other	near-infrared light energy conversion
NPs.	Ionic crystalline heterostructured NPs are synthesized by
In this study, a series of novel NPs that surpass the	ion exchange of heavily doped semiconductor NPs ($Cu_{2-x}S$,
performance of noble metal NPs will be generated from	ITO, etc.) exhibiting localized surface plasmon resonance
theoretical and experimental points of view as follows.	in near-infrared region, and used as near-infrared light
(1) The electronic structures of NPs are largely modulated	energy conversion materials.
by the introduction of p-block elements into d-block metal	F
NPs and the alloying by element replacement (galvanic	Expected Research Achievements and
replacement) with base metal ions to achieve the superior	Scientific Significance
physical and chemical properties.	If the crystal structures and electronic structures of
(2) The crystal and electronic structures are modulated by	inorganic crystal phases could be freely modulated by
the partial element replacement (ion exchange) to form the	simple element replacement reactions, rare noble metals
ionic crystalline heterostructured NPs, which can convert	would be completely replaced. For example, if the Pt NPs
the whole near infrared light energy.	used in the polymer electrolyte fuel cell could be replaced
Through these studies, novel material science called	with NiP_x NPs having comparable catalytic ability, the
"nanoscale element replacement science" on the basis of	cost of the catalysts would be simply reduced to 1/3000 or
the new concept "ground-state electronic structure	less. In addition, if the rod-like Au NPs, which absorb
modulation" will be developed.	near-infrared light, could be substituted for heavily-doped
	semiconductor NPs, whole near-infrared light energy
[Research Methods]	would be utilized, which is a great contribution to energy
In this study, two kinds of novel NPs, unprecedented	problems.
metal NPs and ionic crystalline heterostructured NPs, are	-
designed and synthesized to achieve the superior properties,	(Publications Relevant to the Project)
compared with the noble metal NPs (Fig. 1).	• Z. Lian, T. Teranishi et al., "Plasmonic p-n Junction for
• Synthesis and novel functions of metal compound NPs	Infrared Light to Chemical Energy Conversion", J. Am.
and unprecedented alloy NPs	Chem. Soc., 141, 2446–2450 (2019).
A series of metal compound NPs composed of d-block	• HL. Wu, T. Teranishi et al., "Formation of
metals and p-block elements are converted into the	Pseudomorphic Nanocages from Cu ₂ O Nanocrystals
unprecedented alloy NPs by the pseudo-galvanic	through Anion Exchange Reactions", Science, 351,
replacement of p-block elements with base metal ions.	1306–1310 (2016).
[partial exchange] [full exchange]	
	Term of Project FY2019-2023
Metal compound Novel alloy	[Budget Allocation] 155,100 Thousand Yen
galvanic replacement	[Homepage Address and Other Contact
ion exchange	Information
********	https://www.scl.kyoto-u.ac.jp/~teranisi/index E.html
lonic crystal	teranisi@scl.kyoto-u.ac.jp
8000000	
Heterostructures	
Fig. 1 Formation of novel alloy NPs and heterostructured NPs	

by using element replacement reactions