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Summary

Insulin-like growth factor 2 (IGF2) is a potent mitogen
whose deregulation plays a role in developing liver,

breast, and prostate cancers. Here, we take a small-
molecule approach to investigate molecular pathways

that modulate IGF2 signaling, by using chromeceptin,
a synthetic molecule that selectively impairs the viabil-

ity and growth of IGF2-overexpressing hepatocellular
carcinoma cells. Affinity purification revealed that

chromeceptin binds to multifunctional protein 2

(MFP-2), a seemingly multifunctional enzyme impli-
cated in peroxisomal b-oxidation. The small mole-

cule-protein interaction stimulates the expression of
IGF binding protein 1 (IGFBP-1) and suppressor of cy-

tokine signaling-3 (SOCS-3), two cellular attenuators
of the IGF signals, through activation of signal trans-

ducers and activators of transcription 6 (STAT6). The
results underline the importance of STATs in IGF/insu-

lin regulation, and they implicate a new pathway for
STAT6 activation that is amenable to small-molecule

intervention.

Introduction

Bioactive small molecules have proven to be valuable
tools for exploring complex cellular processes [1–3].
Small-molecule tools are complementary to nucleic
acid-based tools in that they target the gene product
rather than the gene locus or mRNA and affect particular
functions for defined periods in cells or organisms [4].
Identification of protein targets of such molecules is a
challenging, but powerful, approach to discovering
new drug targets and signaling pathways relevant to hu-
man diseases [5–8]. Herein, we take a small-molecule-
initiated approach to discovering a molecular pathway
that controls regulation of insulin-like growth factor 2
(IGF2).

IGF2 is a potent mitogen for a range of cell types. Can-
cer cells expressing higher levels of IGF2 and its recep-
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tor, IGF1R, are usually more aggressive and have a
stronger tendency to metastasize [9]. Overexpression
of IGF2 has been observed in a number of malignancies,
including hepatocellular carcinoma [10], breast cancer
[11], Wilm’s tumor [12], and hemangioma [13]. The in-
volvement of IGF2 in these human malignancies sug-
gests that the molecular analysis of IGF2 regulation
with small molecules may lead to a better understanding
of human cancers and possibly a new cancer therapy.

We previously discovered from a chemical library a
small organic molecule that inhibits insulin-induced adi-
pogenesis. The drug-like molecule was later shown to
impair the growth and viability of IGF2-overexpressing
hepatocellular carcinoma cells and was named chrome-
ceptin (Figure 1A) [14]. Molecular biological experiments
suggest that chromeceptin exerts its biological activity
by blocking the autocrine loop of IGF2. However, its pre-
cise mechanism of action remained unknown. Here, we
report the identity of a chromeceptin binding protein and
a molecular pathway that is modulated by chromeceptin
with the goal of providing new insights into the regula-
tion of IGF2 in cancer.

Results

Chromeceptin Activates the Expression of IGFBP-1

To identify genes whose expression patterns are influ-
enced by chromeceptin, we performed gene expression
analysis with DNA microarrays consisting of duplicated
spots for 1,146 best-characterized cancer-related hu-
man genes (http://www.mdanderson.org/wgenome).
The microarray results showed that the non-stress-re-
sponsive gene that was statistically the most upregu-
lated by chromeceptin among the 1,146 genes was
that of IGFBP-1, a secreted IGF binding polypeptide
that is known to inhibit the metabolic and mitogenic
functions of IGF2 [15–18]. The upregulated expression
of IGFBP-1 was further validated by RT-PCR (Figure 1B)
and ELISA (Figure 1C). Incubation of HepG2 cells with
IGFBP-1 resulted in inhibition of proliferation by w20%,
while the same concentration of IGFBP-1 had no detect-
able effects on the growth of cells with low levels of IGF2
(SK-Hep-1). Although other genes may be involved in
the chromeceptin phenotype, the clear induction of
IGFBP-1 encouraged us to use IGFBP-1 as a starting
point for identifying IGF-linked molecular pathways
modulated by chromeceptin.

Identification of a Chromeceptin-Responsive
Element in the IGFBP-1 Promoter

Given that transcription factors are usually far-down-
stream factors of signal transduction pathways [19,
20], identification of a chromeceptin-responsive tran-
scription factor that activates the IGFBP-1 promoter
would provide an initial step for analyzing the chrome-
ceptin-induced signaling. To define DNA sequences
that confer the responsiveness to chromeceptin, a series
of IGFBP-1 promoter fragments was ligated to a SEAP
reporter gene and transiently transfected to IGF2-over-
expressing HepG2 cells. As shown in Figure 2A, a 190
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bp segment of the IGFBP-1 promoter (23173/22983) is
highly responsive to chromeceptin. Further deletion
from either the 50or 30 ends significantly reduced the re-
porter response to chromeceptin, suggesting that the
190 bp region contains enhancer element(s) mediating
the chromeceptin-induced transactivation of IGFBP-1.
To further narrow down DNA sequences that confer
the responsiveness to chromeceptin, a series of 28 bp
oligonucleotide duplexes was designed to cover the
190 bp segment of the IGFBP-1 promoter, and 3 tandem
copies of each fragment were ligated to a SEAP reporter
gene. Transfection of the reporter constructs showed
that the reporter gene comprised of oligonucleotide #5
was responsive to chromeceptin (Figure 2B), indicating
that oligonucleotide #5 contains a chromeceptin-re-
sponsive DNA element.

STAT6 Is a Chromeceptin-Responsive Element

Binding Transcription Factor
By using the DNA sequence of oligonucleotide #5, we
searched databases for transcription factor(s) that po-
tentially bind to the chromeceptin-responsive element.
Our search suggested that the sequence contains
a binding site consensus for the STAT family of tran-
scription factors (Figure 3A), which mediate cellular tran-
scriptional responses to a variety of cytokines and
growth factors [21]. Introduction of point mutations to
the STAT binding site in the reporter construct abolished

Figure 1. Chromeceptin Activates the Expression of IGFBP-1 in

HepG2 Cells

(A) The chemical structure of chromeceptin.

(B) HepG2 cells were treated with chromeceptin for 6 hr in serum-

free medium, and IGFBP-1 mRNA levels were quantitated by

RT-PCR analysis.

(C) The concentrations of IGFBP-1 were measured by ELISA after

treatment with various amounts of chromeceptin for 6 hr. The re-

sults are shown as fold increase over the IGFBP-1 concentration

in DMSO-treated cells.
Figure 2. Identification of a Chromeceptin-Responsive Element in

the IGFBP-1 Promoter

(A and B) Identification of the 190 bp IGFBP-1 promoter responsive

to chromeceptin. (A) Reporter gene constructs in which a SEAP

gene is controlled by various fragments of the IGFBP-1 promoter

were transfected into HepG2 cells, and the effects of chromeceptin

on the reporter gene expression were examined. It is evident that

the promoter 23173/22983 is highly responsive to chromeceptin

(15-fold induction). All presented sequence coordinates of the pro-

moter fragments are relative to the transcription start site. (B) De-

sign of a series of 28 bp oligonucleotide duplexes that cover the

109 bp promoter (23173/22983) (top). Three tandem copies of

each 28 bp fragment were linked to a SEAP reporter gene, and their

promoter activities were monitored by SEAP assay (bottom). It is

evident that oligonucleotide #5 confers the responsiveness to chro-

meceptin.
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Figure 3. Identification of STAT6 as a Chromeceptin-Responsive

Element Binding Transcription Factor

(A) Mutational analysis of the consensus binding site for STAT. The

reporter gene driven by three tandem copies of either wild-type or

mutant oligonucleotide #5 was transfected into HepG2 cells, and

promoter activities were monitored by SEAP assay. The consensus

binding site for the STAT family of transcription factors is high-

lighted in red, and the point mutations in the STAT binding site

are indicated by arrows. The presented sequence coordinates of

the promoter fragment are relative to the transcription start site.

(B) ChIP assays were performed with sheared chromatins from

chromeceptin-treated cells. It is evident that an anti-STAT6 anti-

body immunoprecipitates an IGFBP-1 promoter fragment contain-
the chromeceptin responsiveness (Figure 3A), indicat-
ing that the STAT binding site is a chromeceptin-respon-
sive element.

A total of seven members of human STATs have been
described in literature: STAT1–4, -5a, -5b, and -6 [22]. To
determine which STAT members bind to the chrome-
ceptin-responsive element in HepG2 cells, we per-
formed a chromatin immunoprecipitation (ChIP) assay.
Sheared chromatins were immunoprecipitated with an-
tibodies raised against each member of the STAT family,
and purified DNA was subjected to PCR analysis to am-
plify an IGFBP-1 promoter sequence encompassing the
chromeceptin-responsive element. As shown in Fig-
ure 3B, anti-STAT6 antibody specifically immunoprecipi-
tated chromatin fragments containing the chromeceptin-
responsive element, while those against the other STAT
members showed no detectable PCR amplification of
the IGFBP-1 promoter.

To confirm the binding of STAT6 to the chromeceptin-
responsive element, we cotransfected HepG2 cells with
an expression plasmid encoding STAT6 and a reporter
gene driven by three tandem copies of the chromecep-
tin-responsive element. Overexpression of STAT6 en-
hanced the reporter gene expression, compared with
when an empty expression vector was transfected (Fig-
ure 3C). We also examined if siRNA knockdown of
STAT6 impairs the chromeceptin-induced expression
of the endogenous IGFBP-1 gene. As shown in Fig-
ure 3D, stable downregulation of STAT6 expression led
to a decrease of the chromeceptin-induced IGFBP-1 ex-
pression, as compared to that in mock-transfected cells.
These results provide evidence that STAT6 is a chrome-
ceptin-responsive element binding transcription factor.

SOCS-3 Expression Is Increased by Chromeceptin

One family of the genes that are known to be activated
by STAT6 is SOCS genes (suppressors of cytokine sig-
naling) [23, 24]. Recent animal and molecular biological
studies revealed that SOCS-1 and SOCS-3 have an un-
expected function besides suppression of cytokine sig-
naling: inhibition of IGF/insulin signaling [25–29]. The rel-
evance of SOCSs both to STAT6 and IGF led to the
hypothesis that chromeceptin increases the expression
of SOCS-1 or -3 as well as IGFBP-1 through activating
STAT6. RT-PCR experiments showed that the expres-
sion of SOCS-3 was increased in chromeceptin-treated

ing the chromeceptin-responsive element. The primer set for ampli-

fying the promoter fragment is indicated by arrows.

(C) Overexpression of STAT6 activates the chromeceptin-respon-

sive element in HepG2 cells. A CMV-STAT6 expression vector

and a reporter gene driven by three tandem copies of oligonucleo-

tide #5 were transiently cotransfected into HepG2 cells, and pro-

moter activities were monitored by SEAP assay. Transfection of

an empty CMV vector served as a control. Values are the mean 6

SD (n = 3); *, p < 0.05 versus pCMV empty.

(D) STAT6 is required for the chromeceptin-induced IGFBP-1 ex-

pression. Western blot analysis of STAT6 proteins in clonal

HepG2 cell lines stably transfected with either an expression vector

of STAT6 siRNA or an empty vector (top). The cell lines were

treated with chromeceptin for 6 hr, and the concentrations of

IGFBP-1 were measured by ELISA. The results are shown as fold

increase over the IGFBP-1 concentration in DMSO-treated cells

(bottom). Values are the mean 6 SD (n = 3); *, p < 0.001 versus

DMSO control.
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cells compared to those in untreated cells (Figure 4A),
while SOCS-1 expression was not affected at any time
point analyzed (data not shown). Western blot analysis
of SOCS-3 protein supports the notion that chromecep-
tin treatment leads to an increase of SOCS-3 expression
in HepG2 cells (Figure 4B). The chromeceptin-induced
SOCS-3 expression was diminished by STAT6 knock-
down, suggesting a STAT6-dependent SOCS-3 expres-
sion by chromeceptin (Figure 4C).

The induction of SOCS-3 and IGFBP-1 takes about
6 hr. If the STAT6-mediated expression of SOCS-3 and
IGFBP-1 is responsible for the inhibition of IGF/insulin
signaling by chromeceptin, then activation of Akt in the
IGF/insulin pathway should not be blocked until 6 hr af-

Figure 4. Chromeceptin Induces SOCS-3 Expression and Downre-

gulates the Phosphorylation of Akt

(A and B) HepG2 cells were either left untreated or treated with 1 mM

of chromeceptin for indicated time periods, and then SOCS-3 levels

were quantitated by RT-PCR analysis and Western blot.

(C) STAT6 is required for the chromeceptin-induced SOCS-3 expres-

sion. The cell lines were treated with 1 mM chromeceptin for 6 hr, and

then total protein samples were subjected to Western blot analysis

with an anti-SOCS-3 antibody.

(D) Chromeceptin downregulates the phosphorylation of Akt in

HepG2 cells. HepG2 cells were plated out into a 6-well plate at a den-

sity of 5 3 105/well. After 24 hr of incubation, the cells were further in-

cubated in serum-free medium containing either DMSO or chrome-

ceptin for indicated time periods. Total cell lysates were subjected

to Western blot analysis with an anti-phospho-Akt antibody (top),

and then the blot was reprobed with an anti-Akt antibody to show

equal loading of proteins (bottom).
ter chromeceptin treatment. Inhibition of the Akt phos-
phorylation was indeed observed 6 hr after chromecep-
tin treatment (Figure 4D), paralleling the induction of
SOCS-3 and IGFBP-1. These results indicate that the ex-
pression of SOCS-3 and IGFBP-1, and perhaps that of
the other genes that are controlled by STAT6, is upregu-
lated by chromeceptin and may work together to sup-
press the function of IGF2 in hepatocellular carcinoma
cells.

MFP-2 Is a Target of Chromeceptin
Identification of proteins that are targeted by bioactive
small molecules has always provided new avenues for
an understanding of cell signaling. To identify a target
protein of chromeceptin, we chemically synthesized
a biotinylated derivative of chromeceptin (Figure 5A).
The structure-activity relationship of 65 chromeceptin
analogs showed that the dimethylamino group has

Figure 5. Isolation of a Chromeceptin Binding Protein

(A) An 81 kDa protein that binds specifically to the biotinylated de-

rivative of chromeceptin was purified from HepG2 cell extracts and

determined to be MFP-2 by microsequencing. The structure of a bi-

otinylated derivative of chromeceptin is shown.

(B) Chromeceptin competes with the chromeceptin-biotin conju-

gate for MFP-2 binding. 35S-Met-labeled MFP-2 protein was pre-

pared by the TNT T7 Quick Coupled Transcription/translation sys-

tem (Promega). The MFP-2 protein was incubated with the

chromeceptin-biotin conjugate in the absence (2) or presence (+)

of chromeceptin, and then the bound MFP-2 protein was purified

by using NeutrAvidin agarose (Pierce).
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Figure 6. Analysis of MFP-2

(A) Western blot analysis of MFP-2 proteins in two clonal HepG2

cell lines stably transfected with an expression vector of MFP-2

siRNA (pSuper/MFP-2).

(B) Silencing of MFP-2 expression renders the cells less sensitive to

chromeceptin in a cell viability assay. The cell lines were treated

with 0.03 mM chromeceptin for 4 days, and the cell viability was de-

termined by WST assays in triplicate (n = 3). *, p < 0.0001 versus

DMSO control.

(C) MFP-2 is required for activation of the chromeceptin-responsive

element. The cell lines were transfected with a SEAP reporter gene

driven by the chromeceptin-responsive element, and they were

then treated with 1 mM chromeceptin for 6 hr.

(D) MFP-2 is required for chromeceptin-induced IGFBP-1 expres-

sion. The cell lines were treated with 1 mM chromeceptin for 6 hr,

and then the concentrations of IGFBP-1 were measured by ELISA.
limited roles in the selective biological activity (K.M. and
M.U., unpublished data), suggesting the position of the
dimethylamino group as a good biotinylation site. Affin-
ity chromatography with avidin agarose beads purified
a protein that binds specifically to the biotinylated de-
rivative of chromeceptin, but not to a control biotin
conjugate or avidin agarose beads (Figure 5A). Micro-
sequencing of the protein showed three peptide se-
quences that matched the amino acid sequence of hu-
man MFP-2 (multifunctional protein-2). Competition
assay with 35S-labeled MFP-2 revealed that chrome-
ceptin indeed competes with the chromeceptin-biotin
conjugate for MFP-2 binding (Figure 5B). These results
suggest that MFP-2 is a target of chromeceptin.

MFP-2 is a seemingly multifunctional enzyme impli-
cated in peroxysomal b-oxidation. However, its precise
functions and natural substrates remain unclear, and
its role in relation to IGF regulation has never been inves-
tigated. To examine if MFP-2 is required for the IGF2-
suppressing phenotype of chromeceptin, we generated
stable cell lines that constitutively express an MFP-2
siRNA. Western blot analysis confirmed selective silenc-
ing of MFP-2 expression in the stably transfected clones
(Figure 6A). The knockdown cells, which exhibited as
much proliferation as mock-transfected cells, were
less sensitive (0.5-fold) to chromeceptin-induced growth
arrest (Figure 6B), suggesting the requirement of MFP-2
for full activity of chromeceptin. The MFP-2 knockdown
also rendered the chromeceptin-responsive element es-
sentially unresponsive to chromeceptin (Figure 6C) and
diminished the chromeceptin-induced activation of
IGFBP-1 (Figure 6D).

If MFP-2 is upstream of STAT6 in the pathway, then
STAT6 overexpression should still induce the chrome-
ceptin-responsive reporter gene in the MFP-2-deficient
cells that are unresponsive to chromeceptin. As shown
in Figure 6E, transfection of a STAT6 expression vector
in MFP-2-deficient cells stimulated the chromeceptin-
responsive reporter gene as much as it does in control
cells. These results collectively suggest that the effects
of chromeceptin are mediated, at least in part, through
regulation of MFP-2 functions, and that MFP-2 is essen-
tial for activation of STAT6 by chromeceptin.

Discussion

STAT6 Activation by Chromeceptin
Small molecules can be used as tools for the discovery
of new molecular pathways through the identification of
their responsive transcription factors, as found in the
discovery of the CREB pathway by using cAMP. Inves-
tigation into the chromeceptin-induced IGFBP-1 ex-
pression led to the identification of STAT6 as a chrome-
ceptin-responsive element binding transcription factor.

The results are shown as fold increase over the IGFBP-1 concen-

tration in DMSO-treated cells. Values are the mean 6 SD (n = 5).

(E) Overexpression of STAT6 activates the chromeceptin-respon-

sive element in MFP-2 knockdown cells. The CMV-STAT6 expres-

sion vector and a reporter gene driven by three tandem copies of

oligonucleotide #5 were transiently cotransfected into clonal

HepG2 cells, and promoter activities were monitored by SEAP as-

say. Transfection of an empty CMV vector served as a control.
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STAT6 is known to be a latent cytoplasmic transcription
factor, whose nuclear translocation and transcriptional
activity are regulated primarily by IL-4 and IL-13 [30, 31].

In a number of tumor-derived cell lines, however,
STAT6 is translocated constitutively into the nucleus,
even in the absence of cytokine stimulation [32, 33]. In
HepG2 cells, STAT6 appears to be present in the nu-
cleus and bind constitutively to the chromeceptin-
responsive element in the IGFBP-1 promoter. The fol-
lowing preliminary observations support this hypothesis
and suggest that chromeceptin activates STAT6 by
a mechanism distinct from that of IL-4 (Y.C., D. Jung,
and M.U., unpublished data): (1) STAT6 is constitutively
phosphorylated to some extent in HepG2 cells at
Tyr641, the residue known to be phosphorylated by
IL-4 stimulation, even in the absence of IL-4 or chrome-
ceptin treatment, and chromeceptin does not induce
Tyr641 phosphorylation; (2) Western blots of nuclear ex-
tracts showed no significant change in the amounts of
STAT6 in the nucleus before and after chromeceptin
treatment; (3) chromeceptin had no detectable effects
on the amounts of the IGFBP-1 promoter immunopre-
cipitated with an anti-STAT6 antibody; (4) the STAT6 re-
porter gene exhibited low levels of gene expression,
even in the absence of chromeceptin, and the expres-
sion was further activated by chromeceptin. It remains
to be elucidated how nuclear STAT6 is further activated
by chromeceptin. Western blots of STAT6 detected a
mobility shift of the STAT6 band on a SDS gel 2–6 hr after
chromeceptin treatment, suggesting posttranslational
modifications of STAT6 other than Tyr641 phosphoryla-
tion (Y.C., D. Jung, and M.U., unpublished data). De-
tailed mechanistic studies are currently underway.

SOCS-3 Induction by Chromeceptin

Identification of STAT6 as a chromeceptin-responsive
transcription factor permitted the detection of chrome-
ceptin-induced SOCS-3 expression. The SOCS-3 induc-
tion was not detected by the initial gene expression
analysis with DNA microarrays. In the analysis of micro-
array results, expression changes of low-expressing
genes such as SOCS-3 tend to be underrepresented
due to their low-intensity signals and lower statistic-
confidence values [34–36]. The reliable measurement
is more achievable for highly expressed genes including
IGFBP-1, which served as a starting point to decipher
the signals of related genes with lower expression
levels.

The SOCS-3 protein has recently been shown to sup-
press insulin-induced tyrosine phosphorylation of insu-
lin receptor substrate 1 (IRS-1) and Akt activation in
HepG2 cells [25]. The observation in cell culture was fur-
ther confirmed in mice by Ueki et al. [28, 37], showing
that increased SOCS-3 protein in the liver causes sys-
temic insulin resistance through inhibition of tyrosine
phosphorylation of IRS proteins. Our results provide
further support for the role of SOCS-3 in IGF/insulin
signaling.

Chromeceptin appears to suppress the function of
IGF2 through inducing the expression of SOCS-3 and
IGFBP-1, and most likely those of other STAT6-respon-
sive genes (Figure 7). Chromeceptin indeed blocks the
activation of Akt in the IGF/insulin pathway (Figure 4D),
and the inhibition of the Akt phosphorylation parallels
the induction of IGFBP-1 and SOCS-3 by chromeceptin.
It would be interesting to know what other STAT6-
responsive genes mediate the inhibition of IGF2 in hepa-
tocellular carcinoma.

It may also be interesting to note that recent work sug-
gests no significant alteration of SOCS-3 expression in B
cells from STAT6-knockout mice [38]. The regulation of
SOCS-3 expression may be dependent on cell types.

How MFP-2 Controls STAT6

The isolation of MFP-2 as a direct binder of chromecep-
tin suggests a functional link between MFP-2 and IGF
signals. Although chromeceptin may bind to multiple
proteins in cells, MFP-2 appears to be a target important
for its STAT6 activation. It remains to be elucidated how
the binding of chromeceptin to MFP-2 activates STAT6.
It is possible to imagine that the binding induces or sta-
bilizes the interaction of MFP-2 with another protein, as
found in the FK506-FKBP complex interacting with cal-
cineurin [39]. If this is the case, it will be necessary to
identify proteins that interact with MFP-2 in the pres-
ence of chromeceptin.

Determination of an exact chromeceptin binding re-
gion in MFP-2 would provide insights into how chrome-
ceptin stimulates STAT6. Our preliminary results
showed that the biotin derivative of chromeceptin binds
to a region corresponding to amino acids 507–736 (data
not shown). This region of MFP-2 shows a sequence
similarity (58%) to the sterol carrier protein 2 (SCP2).
However, the role of the SCP2-like domain for the
functionality of MFP-2 remains unclear. Search for the
proteins that mediate STAT6 activation is currently
underway.

Significance

Our results showed that binding of chromeceptin to
MFP-2 stimulates the expression of IGFBP-1 and

SOCS-3, two important cellular attenuators of IGF sig-
nals, through activation of STAT6 (Figure 7). These re-

sults provide chemical genetic support for the roles of
the STAT-SOCS pathway in IGF regulation, and they

Figure 7. Functional Links among MFP-2, STAT, and IGF2 Signals

ChrRE represents a chromeceptin-responsive element.
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implicate a new, to our knowledge, pathway for STAT6
activation. Although it remains to be elucidated how

binding of chromeceptin to MFP-2 triggers STAT6 ac-
tivation, our chemical genetic study could provide

a basis for future efforts to understand the regulatory
circuit of IGF2 in hepatocellular carcinoma.

Experimental Procedures

Abbreviations

The abbreviations used are: IGF, insulin-like growth factor; IGFBP,

IGF-binding protein; MFP2, multifunctional protein-2; SOCS, sup-

pressor of cytokine signaling; STAT, signal transducer and activator

of transcription; ELISA, enzyme-linked immunosorbent assay;

SEAP, secreted alkaline phosphotase; ChIP, chromatin immuno-

precipitation.

Oligonucleotide Microarray Analysis

HepG2 cells were treated with either DMSO or 1 mM chromeceptin

for 6 hr in serum-free medium. Total RNA was extracted in a TRI

reagent (Molecular Research Center) and further isolated with an

RNeasy Mini Kit (Qiagen). Microarray experiments were performed

by using the oligonucleotide arrays (CG11 oligoarray) with 1,146

functionally known genes, produced by Cancer Genomic Core Lab-

oratory at M.D. Anderson Cancer Center (Houston, TX), as described

previously [40–42].

IGFBP-1 ELISA

HepG2 cells were plated out in triplicate at a density of 5 3 105/well

onto a 6-well plate in Minimal Essential Medium (MEM) containing

10% fetal bovine serum (FBS), sodium pyruvate, glutamate, and

nonessential amino acids. After a 24 hr incubation, the cells were

maintained in serum-free medium and treated with chromeceptin

for 6 hr. The IGFBP-1 concentration in cell-conditioned media was

measured with the Active Total IGFBP-1 ELISA kit (Diagnostic Sys-

tems Laboratories). A set of IGFBP-1 standards was used to plot

a standard curve of absorbance versus IGFBP-1 concentration,

and the IGFBP-1 concentrations of the samples were calculated

from the standard curve.

Plasmid Construction

All human IGFBP-1 promoter fragments were amplified from geno-

mic DNA by PCR. The primer sequences were derived from Homo

sapiens BAC clone RP11-132L11 (GenBank number: AC091524).

The DNA fragments corresponding to nucleotides 23499 to +68,

23237 to +68, 23173 to +68, 23081 to +68, and 23004 to +68

were cloned to KpnI/HindIII sites of the pTA-SEAP vector, which

contains a secreted alkaline phosphatase (SEAP) reporter gene

(Clontech). The DNA fragments corresponding to nucleotides

23173 to 22859, 23173 to 22932, 23173 to 22983, and 23173 to

23061 were cloned to KpnI/BglII sites of the pTA-SEAP vector,

where a TATA box ensures optimal induction of the reporter gene.

All presented sequence coordinates of the promoter fragments are

relative to the transcription start site.

Transfection and Secreted Alkaline Phosphatase Assay

HepG2 cells were plated out in triplicate at a density of 5 3 105/well

onto a 6-well plate in MEM containing 10% FBS, sodium pyruvate,

glutamate, and nonessential amino acids. After a 24 hr incubation,

the cells were maintained in MEM containing 1% FBS, sodium pyru-

vate, glutamate, and nonessential amino acids, and they were then

transiently transfected with 1 mg reporter gene by using FuGENE6

(Roche). A total of 17 hr after transfection, the cells were washed

twice in serum-free medium, and then treated with 1 mM chromecep-

tin for 6 hr in serum-free medium. SEAP activity was measured as

described [43].

Reverse Transcription-PCR

Total RNA was extracted from HepG2 cells in a TRI reagent (Molec-

ular Research Center) and further isolated with an RNeasy Mini Kit

(Qiagen). The RNA sample was subjected to RT-PCR by using the

Access RT-PCR System (Promega). RT-PCR reactions include total

RNA, 1 mM of each primer, 0.2 mM dNTP, 1 mM MgSO4, AMV reverse
transcriptase (2 U), and Tfl DNA polymerase (2 U) in a final volume of

25 ml. The primer pairs used are as follows: 50-TGCAGAGGC

AGGGAGCCCTGAAA-30 and 50-TATATCTGGCAGTTATGTA-30 for

IGFBP-1; 50-AACGGGAAGCTTGTCATCAAT-30 and 50-GCCAGTGA

GCTTCCCGTTCA-30 for GAPDH; 50-TCACCCACAGCAAGTTTCC

CGC-30 and 50-GTTGACGGTCTCCG ACAGAGATGC-30 for SOCS-3.

Chromatin Immunoprecipitation Assay

Chromatin immunoprecipitation (ChIP) assays were performed by

using the ChIP assay kit (Upstate Biotechnology) according to the

manufacturer’s protocol. HepG2 cells (1 3 107) were treated with

1 mM chromeceptin for 6 hr in serum-free medium, and they were

then treated with formaldehyde at a final concentration of 1% for

10 min at 37ºC. Lysates from the cells were sonicated with 5 sets

of 10 s pulses set to 25% of maximum power to shear chromatin

to lengths between 200 and 1000 bp. The sheared chromatins

were incubated with 10 mg of each STAT antibody (Santa Cruz Bio-

technology) at 4ºC, and purified DNA was subjected to PCR analysis

as follows: 1 cycle at 94ºC for 4 min; 35 cycles at 94ºC for 30 s, 55ºC

for 30 s, 68ºC for 60 s; and 1 cycle at 68ºC for 7 min.

Synthesis of a Biotinylated Derivative of Chromeceptin

To a solution of 2,7-Diamino-4-(3-trifluoromethyl-phenyl)-4H-chro-

mene-3-carbonitrile (1.0 mg, 0.003 mmol) and diisopropylethyl-

amine (0.003 mmol) in DMSO/CH2Cl2 were added a trace of 4-(dime-

thylamino)pyridine and a biotin-XX-NHS (3.4 mg, 0.006 mmol). The

solution was stirred at room temperature for 10 days, diluted with

brine, and extracted with CHCl3. The combined extracts were dried

over Na2SO4 and then concentrated in vacuum. The residue was pu-

rified by column chromatography on silica gel with CHCl3/methanol

mixtures to give the biotinylated chromeceptin (2.2 mg, 93%). 1H

NMR (CD3OD, 270 MHz) dH 7.59 (d, J = 1.9 Hz, 1H), 7.48–7.52 (m,

4H), 7.08 (dd, J = 8.1, 2.0 Hz, 1H), 6.91 (d, J = 8.9 Hz, 1H), 4.62 (br,

1H), 4.46 (m, 1H), 4.30 (m, 1H), 3.1–3.3 (m, 5H), 2.90 (dd, J = 12.4,

4.9 Hz, 1H), 2.70 (d, J = 12.4 Hz, 1H), 2.36 (t, J = 4.6 Hz 2H), 2.15

(m, 4H), 1.3–1.7 (m, 18H); MS (ESI) Exact mass calcd for

C39H48F3N7O5S + H requires m/z 784.34. Found m/z 784.3.

Purification of Chromeceptin Binding Protein

HepG2 cells (2 ml of packed cell volume) were washed with PBS and

collected in 15 ml PBS containing 0.5% Nonidet P-40 and 1 mM PMSF.

Lysates were well shaken at 4ºC for 30 min and subject to brief soni-

cation, followed by high-speed centrifugation (100,000 3 g) for 1 hr.

Endogenous biotinylated proteins in supernatant were adsorbed

to an Avidin agarose column (Sigma), and the flowthrough fraction

was then incubated with 5 mM of the biotinylated derivative of chro-

meceptin for 12 hr at 4ºC. The proteins bound to biotinylated deriv-

ative of chromeceptin were purified with NeutrAvidin agarose

(Pierce) and eluted with SDS/PAGE sample buffer. The resulting

samples were separated on an 8% polyacrylamide gel and visual-

ized by Coomassie brilliant blue R-250 staining. The protein band

was excised from the gel and microsequenced by mass spectrom-

etry as described [44].

Knockdown of Protein Expression with Small Interfering RNA

To generate HepG2 cells that constitutively express a STAT6 siRNA,

we used the GenEclipse STAT6 Vector-based RNAi kit (Chemicon).

Stable downregulation of MFP-2 expression in HepG2 cells was

achieved with the pSuper RNAi System (OligoEngine). The 19 nt tar-

geting sequence derived from the MFP-2 transcript is as follow:

50-CGGAUGACUCAGACAGUUA-30. HepG2 cells (2 3 106) in a

10 cm culture dish were transfected with vector constructs (10 mg)

by using FuGENE6 (Roche) according to the manufacturer’s proto-

col. The cells were divided at 1:20 dilution 48 hr after transfection

and further incubated in medium containing 1 mg/ml neomycin de-

rivative (G418) before individual colonies were picked and expanded

into cell lines.
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